Multidimensional Decision Tree Splits to Improve Interpretability

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multidimensional fuzzy finite tree automata

This paper introduces the notion of multidimensional fuzzy finite tree automata (MFFTA) and investigates its closure properties from the area of automata and language theory. MFFTA are a superclass of fuzzy tree automata whose behavior is generalized to adapt to multidimensional fuzzy sets. An MFFTA recognizes a multidimensional fuzzy tree language which is a regular tree language so that for e...

متن کامل

T3C: improving a decision tree classification algorithm's interval splits on continuous attributes

This paper proposes, describes and evaluates T3C, a classification algorithm that builds decision trees of depth at most three, and results in high accuracy whilst keeping the size of the tree reasonably small. T3C is an improvement over algorithm T3 in the way it performs splits on continuous attributes. When run against publicly available data sets, T3C achieved lower generalisation error tha...

متن کامل

Finding Optimal Multi-Splits for Numerical Attributes in Decision Tree Learning

Handling continuous attribute ranges remains a deeciency of top-down induction of decision trees. They require special treatment and do not t the learning scheme as well as one could hope for. Nevertheless, they are common in practical tasks and, therefore, need to be taken into account. This topic has attracted abundant attention in recent years. In particular , Fayyad and Irani showed how opt...

متن کامل

Meaningful Models: Utilizing Conceptual Structure to Improve Machine Learning Interpretability

The last decade has seen huge progress in the development of advanced machine learning models; however, those models are powerless unless human users can interpret them. Here we show how the mind‘s construction of concepts and meaning can be used to create more interpretable machine learning models. By proposing a novel method of classifying concepts, in terms of ‘form’ and ‘function’, we eluci...

متن کامل

Selecting Multiway Splits in Decision Trees

Decision trees in which numeric attributes are split several ways are more comprehensible than the usual binary trees because attributes rarely appear more than once in any path from root to leaf. There are efficient algorithms for finding the optimal multiway split for a numeric attribute, given the number of intervals in which it is to be divided. The problem we tackle is how to choose this n...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Procedia Computer Science

سال: 2020

ISSN: 1877-0509

DOI: 10.1016/j.procs.2020.08.017